If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+33x+15=0
a = -16; b = 33; c = +15;
Δ = b2-4ac
Δ = 332-4·(-16)·15
Δ = 2049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-\sqrt{2049}}{2*-16}=\frac{-33-\sqrt{2049}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+\sqrt{2049}}{2*-16}=\frac{-33+\sqrt{2049}}{-32} $
| 7x-4x=27+9x3 | | 2(x+2)+5(x-5)=6 | | X3-6x2+8x=0 | | 3x-2x=326+18+300+26 | | 4/5x+8=3/4x-7 | | 24+x=10 | | 15x²-5=22x | | 2x-10(2^(-x))+3=0 | | 5x-x=-48+12x3+24 | | 7x-x=-36+18x2+18 | | 6/15=8x | | 6^x-10=13^3x | | 1x-5=-4-2x | | 14x+12=2(7x+6) | | (2x-2)(x-2)(x)=96 | | 3x=-5+-6+1+6 | | 3p+3=2/3p+5 | | y/100=13 | | x/7=1200 | | 12-3x+11=14 | | 5x-137+5x-161+x=180 | | 5x-137+5x-161=6x-22 | | 5x+137+5x-161=6x-22 | | 11^-5y=8 | | -7w=14/9 | | 2/3w=-10 | | 1.5x^2-6.9x+9=0 | | (9+2x)•6=14+7x | | 9(3a+5)+9=54 | | 360g=12 | | X*3-200=x+100 | | -w^2=-5 |